11 research outputs found

    Pharma-Nutritional Properties of Olive Oil Phenols. Transfer of New Findings to Human Nutrition

    No full text
    The Mediterranean diet has been long associated with improved cardiovascular prognosis, chemoprevention, and lower incidence of neurodegeneration. Of the multiple components of this diet, olive oil stands out because its use has historically been limited to the Mediterranean basin. The health benefits of olive oil and some of its components are being rapidly decoded. In this paper we review the most recent pharma-nutritional investigations on olive oil biophenols and their health effects, chiefly focusing on recent findings that elucidate their molecular mechanisms of action

    Breast milk microRNAs harsh journey towards potential effects in infant development and maturation. Lipid encapsulation can help

    No full text
    The possibility that diet-derived miRNAs survive the gastrointestinal tract and exert biological effects in target cells is triggering considerable research in the potential abilities of alimentary preventive and therapeutic approaches. Many validation attempts have been carried out and investigators disagree on several issues. The barriers exogenous RNAs must surpass are harsh and adequate copies must reach target cells for biological actions to be carried out. This prospect opened a window for previously unlikely scenarios concerning exogenous non-coding RNAs, such as a potential role for breast milk microRNAs in infants' development and maturation. This review is focused on the thorny path breast milk miRNAs face towards confirmation as relevant role players in infants' development and maturation, taking into consideration the research carried out so far on the uptake, gastrointestinal barriers and potential biological effects of diet-derived miRNAs. We also discuss the future pharmacological and pharma-nutritional consequences of appropriate miRNAs research

    Consumption of Distinct Dietary Lipids during Early Pregnancy Differentially Modulates the Expression of microRNAs in Mothers and Offspring

    No full text
    Diet during pregnancy and lactation influences the offspring's health in the long-term. Indeed, human epidemiological studies and animal experiments suggest that different type of fatty acids consumption during pregnancy affect offspring development and susceptibility to metabolic disorders. Epigenetic changes are thought to be elicited by dietary factors during critical timing of development. microRNAs (miRNAs) are versatile regulators of gene expression. Thus, we aimed to determine the influence of different fatty acids on miRNA expression in offspring when given during early pregnancy. We fed pregnant either soybean (SO), olive (OO), fish (FO), linseed (LO), or palm-oil (PO) diets from conception to day 12 of gestation; and standard diet thereafter. miRNA expression was assessed in liver an adipose tissue of pregnant rats and their virgin counterparts. While liver concentrations of fatty acids in pregnant or virgin rats replicated those of the diets consumed during early pregnancy, their pups' liver tissue marginally reflected those of the respective experimental feeds. By contrast, the liver fatty acid profile of adult offsprings was similar, regardless of the diet fed during gestation. Different parental miRNAs were modulated by the different type of fatty acid: in adult offspring, miR-215, miR-10b, miR-26, miR-377-3p, miR-21, and miR-192 among others, were differentially modulated by the different fatty acids fed during early pregnancy. Overall, our results show that maternal consumption of different types of fatty acids during early pregnancy influences miRNA expression in both maternal and offspring tissues, which may epigenetically explain the long-term phenotypic changes of the offspring

    Olive oil consumption and its repercussions on lipid metabolism

    No full text
    Consumption of highly processed foods, such as those high in trans fats and free sugars, coupled with sedentarism and chronic stress increases the risk of obesity and cardiometabolic disorders, while adherence to a Mediterranean diet is inversely associated with the prevalence of such diseases. Olive oil is the main source of fat in the Mediterranean diet. Data accumulated thus far show consumption of extra virgin, (poly)phenol-rich olive oil to be associated with specific health benefits. Of note, recommendations for consumption based on health claims refer to the phenolic content of extra virgin olive oil as beneficial. However, even though foods rich in monounsaturated fatty acids, such as olive oil, are healthier than foods rich in saturated and trans fats, their inordinate use can lead to adverse effects on health. The aim of this review was to summarize the data on olive oil consumption worldwide and to critically examine the literature on the potential adverse effects of olive oil and its main components, particularly any effects on lipid metabolism. As demonstrated by substantial evidence, extra virgin olive oil is healthful and should be preferentially used within the context of a balanced diet, but excessive consumption may lead to adverse consequences

    Proteomic evaluation of mouse adipose tissue and liver following hydroxytyrosol supplementation

    No full text
    Hydroxytyrosol (HT) is the primary phenolic compound of olives, virgin olive oil, and their byproducts. Proteomic analysis of metabolically active tissues helps elucidating novel mechanisms of action and potential targets in cardiometabolic disease. Thus, we aimed at determining the impact of long-term HT supplementation on the proteome of adipose and liver tissue, in mice

    Exosomes transport trace amounts of (poly)phenols

    No full text
    (Poly)phenols have varied biological activities that may account for the beneficial effects of fruits and vegetables as part of a healthy diet. Although their cellular absorption and their many mechanisms of action have been partly elucidated, their transport through the systemic circulation, other than their binding to albumin, is poorly described. We aimed at determining whether (poly)phenols can be transported by extracellular vesicles. We supplemented rats with a dietary grape seed polyphenol extract (GSPE) and we quantified (poly)phenols and their metabolites at 3 and 7 h post-gavage. After quantitative LC-MS/MS analysis of circulating aglycones, and microbial-derived, or phase II-derived metabolites we recorded a quantitatively very modest transport of (poly)phenols in plasma exosomes when isolated by commercial ultracentrifugation or precipitation kits. Our data suggest that GSPE-derived (poly)phenols are minimally, if at all, transported by exosomes

    Modulation of miRNA expression in aged rat hippocampus by buttermilk and krill oil

    No full text
    The increasing incidence of age-induced cognitive decline justifies the search for complementary ways of prevention or delay. We studied the effects of concentrates of phospholipids, sphingolipids, and/or 3-n fatty acids on the expression of genes or miRNAs related to synaptic activity and/or neurodegeneration, in the hippocampus of aged Wistar rats following a 3-month supplementation. The combination of two phospholipidic concentrates of krill oil (KOC) and buttermilk (BMFC) origin modulated the hippocampal expression of 119 miRNAs (11 were common to both BMFC and BMFC + KOC groups). miR-191a-5p and miR-29a-3p changed significantly only in the BMFC group, whereas miR-195-3p and miR-148a-5p did so only in the combined-supplemented group. Thirty-eight, 58, and 72 differentially expressed genes (DEG) were found in the groups supplemented with KOC, BMFC and BMFC + KOC, respectively. Interaction analysis unveiled networks of selected miRNAs with their potential target genes. DEG found in the KOC and BMFC groups were mainly involved in neuroactive processes, whereas they were associated with lysosomes and mRNA surveillance pathways in the BMFC + KOC group. We also report a significant reduction in hippocampal ceramide levels with BMFC + KOC. Our results encourage additional in-depth investigations regarding the potential beneficial effects of these compounds

    Hydroxytyrosol supplementation modulates the expression of miRNAs in rodents and in humans

    No full text
    Dietary microRNAs (miRNAs) modulation could be important for health and wellbeing. Part of the healthful activities of polyphenols might be due to a modulation of miRNAs' expression. Among the most biologically active polyphenols, hydroxytyrosol (HT) has never been studied for its actions on miRNAs. We investigated whether HT could modulate the expression of miRNAs in vivo. We performed an unbiased intestinal miRNA screening in mice supplemented (for 8 weeks) with nutritionally relevant amounts of HT. HT modulated the expression of several miRNAs. Analysis of other tissues revealed consistent HT-induced modulation of only few miRNAs. Also, HT administration increased triglycerides levels. Acute treatment with HT and in vitro experiments provided mechanistic insights. The HT-induced expression of one miRNA was confirmed in healthy volunteers supplemented with HT in a randomized, double-blind and placebo-controlled trial. HT consumption affects specific miRNAs' expression in rodents and humans. Our findings suggest that the modulation of miRNAs' action through HT consumption might partially explain its healthful activities and might be pharmanutritionally exploited in current therapies targeting endogenous miRNAs. However, the effects of HT on triglycerides warrant further investigations

    Intestinal Lipid Metabolism Genes Regulated by miRNAs

    Get PDF
    MicroRNAs (miRNAs) crucial roles in translation repression and post-transcriptional adjustments contribute to regulate intestinal lipid metabolism. Even though their actions in different metabolic tissues have been elucidated, their intestinal activity is yet unclear. We aimed to investigate intestinal miRNA-regulated lipid metabolism-related genes, by creating an intestinal-specific Dicer1 knockout (Int-Dicer1 KO) mouse model, with a depletion of microRNAs in enterocytes. The levels of 83 cholesterol and lipoprotein metabolism-related genes were assessed in the intestinal mucosa of Int-Dicer1 KO and Wild Type C57BL/6 (WT) littermates mice at baseline and 2 h after an oral lipid challenge. Among the 18 genes selected for further validation, Hmgcs2, Acat1 and Olr1 were found to be strong candidates to be modulated by miRNAs in enterocytes and intestinal organoids. Moreover, we report that intestinal miRNAs contribute to the regulation of intestinal epithelial differentiation. Twenty-nine common miRNAs found in the intestines were analyzed for their potential to target any of the three candidate genes found and validated by miRNA-transfection assays in Caco-2 cells. MiR-31-5p, miR99b-5p, miR-200a-5p, miR-200b-5p and miR-425-5p are major regulators of these lipid metabolism-related genes. Our data provide new evidence on the potential of intestinal miRNAs as therapeutic targets in lipid metabolism-associated pathologies
    corecore